Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Skelet Muscle ; 11(1): 10, 2021 04 21.
Article in English | MEDLINE | ID: covidwho-1197351

ABSTRACT

BACKGROUND: SARS-CoV2 virus could be potentially myopathic. Serum creatinine phosphokinase (CPK) is frequently found elevated in severe SARS-CoV2 infection, which indicates skeletal muscle damage precipitating limb weakness or even ventilatory failure. CASE PRESENTATION: We addressed such a patient in his forties presented with features of severe SARS-CoV2 pneumonia and high serum CPK. He developed severe sepsis and acute respiratory distress syndrome (ARDS) and received intravenous high dose corticosteroid and tocilizumab to counter SARS-CoV2 associated cytokine surge. After 10 days of mechanical ventilation (MV), weaning was unsuccessful albeit apparently clear lung fields, having additionally severe and symmetric limb muscle weakness. Ancillary investigations in addition with serum CPK, including electromyogram, muscle biopsy, and muscle magnetic resonance imaging (MRI) suggested acute myopathy possibly due to skeletal myositis. CONCLUSION: We wish to stress that myopathogenic medication in SARS-CoV2 pneumonia should be used with caution. Additionally, serum CPK could be a potential marker to predict respiratory failure in SARS-CoV2 pneumonia as skeletal myopathy affecting chest muscles may contribute ventilatory failure on top of oxygenation failure due to SARS-CoV2 pneumonia.


Subject(s)
COVID-19/physiopathology , Creatine Kinase/blood , Muscle, Skeletal/physiopathology , Muscular Diseases/physiopathology , Quadriplegia/physiopathology , Respiratory Distress Syndrome/physiopathology , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/therapeutic use , Adult , Alanine/analogs & derivatives , Alanine/therapeutic use , Antibodies, Monoclonal, Humanized/therapeutic use , Anticoagulants/therapeutic use , Antiviral Agents/therapeutic use , COVID-19/complications , COVID-19/therapy , Critical Illness , Dexamethasone/therapeutic use , Electromyography , Glucocorticoids/therapeutic use , Heparin, Low-Molecular-Weight/therapeutic use , Humans , Intensive Care Units , Magnetic Resonance Imaging , Male , Methicillin-Resistant Staphylococcus aureus , Muscle, Skeletal/diagnostic imaging , Muscle, Skeletal/pathology , Muscular Diseases/blood , Muscular Diseases/diagnosis , Muscular Diseases/etiology , Neural Conduction , Pulmonary Embolism/diagnosis , Pulmonary Embolism/drug therapy , Pulmonary Embolism/etiology , Pulmonary Embolism/physiopathology , Quadriplegia/etiology , Respiration, Artificial , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/therapy , SARS-CoV-2 , Severity of Illness Index , Staphylococcal Infections/complications , Staphylococcal Infections/diagnosis , Staphylococcal Infections/drug therapy , Ventilator Weaning
2.
Neurol Sci ; 42(2): 607-612, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-1051353

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the infectious agent responsible for coronavirus disease 2019 (COVID-19). Respiratory and gastrointestinal manifestations of SARS-CoV-2 are well described, less defined is the clinical neurological spectrum of COVID-19. We reported a case of COVID-19 patient with acute monophasic Guillain-Barré syndrome (GBS), and a literature review on the SARS-CoV-2 and GBS etiological correlation. CASE DESCRIPTION: A 68 years-old man presented to the emergency department with symptoms of acute progressive symmetric ascending flaccid tetraparesis. Oropharyngeal swab for SARS-CoV-2 tested positive. Neurological examination showed bifacial nerve palsy and distal muscular weakness of lower limbs. The cerebrospinal fluid assessment showed an albuminocytologic dissociation. Electrophysiological studies showed delayed distal latencies and absent F waves in early course. A diagnosis of Acute Inflammatory Demyelinating Polyradiculoneuropathy (AIDP) subtype of GBS was then made. CONCLUSIONS: Neurological manifestations of COVID-19 are still under study. The case we described of GBS in COVID-19 patient adds to those already reported in the literature, in support of SARS-CoV-2 triggers GBS. COVID-19 associated neurological clinic should probably be seen not as a corollary of classic respiratory and gastrointestinal symptoms, but as SARS-CoV-2-related standalone clinical entities. To date, it is essential for all Specialists, clinicians and surgeons, to direct attention towards the study of this virus, to better clarify the spectrum of its neurological manifestations.


Subject(s)
COVID-19/complications , Guillain-Barre Syndrome/etiology , Quadriplegia/etiology , Acute Disease , Aged , COVID-19/diagnosis , Guillain-Barre Syndrome/diagnosis , Guillain-Barre Syndrome/physiopathology , Humans , Male , Quadriplegia/diagnosis , Quadriplegia/physiopathology
3.
Spinal Cord Ser Cases ; 6(1): 87, 2020 09 17.
Article in English | MEDLINE | ID: covidwho-779971

ABSTRACT

INTRODUCTION: Respiratory complications (RC) are a leading cause of death after spinal cord injury (SCI) due to compromised immune function and respiratory muscle weakness. Thus, individuals with SCI are at high risk of developing COVID-19 related RC. Results of a SCI clinical trial showed a supervised respiratory muscle training (RMT) program decreased risk of developing RC. The feasibility of conducting unsupervised RMT is not well documented. Four publications (n = 117) were identified in which unsupervised RMT was performed. Significant improvements in respiratory outcomes were reported in two studies: Maximal Inspiratory and Expiratory Pressure (MIP40% and MEP25%, respectively), Peak Expiratory Flow (PEF9%), seated and supine Forced Vital Capacity (FVC23% and 26%, respectively), and Peak Cough Flow (28%). This review and case report will attempt to show that an inspiratory muscle training (IMT) home exercise program (HEP) is feasible and may prepare the respiratory system for RC associated with COVID-19 in patients with SCI. CASE PRESENTATION: A 23-year-old with tetraplegia (P1), history of mechanical ventilation, and hospitalization for RC, completed 27 IMT HEP sessions in one month. MIP and sustained MIP (SMIP) increased from baseline by 28% and 26.5%, respectively. Expiratory volumes and rates also improved (FVC, FEV1, and PEF: 11.7%, 8.3%, and 14.2%, respectively). DISCUSSION: The effects of COVID-19 on patients with SCI remains inconclusive, but recent literature and the results of this case suggest that unsupervised IMT is feasible and may limit the severity of RC in patients with SCI who contract COVID-19.


Subject(s)
Betacoronavirus , Breathing Exercises/methods , Coronavirus Infections/prevention & control , Inhalation/physiology , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Respiratory Tract Infections/prevention & control , Spinal Cord Injuries/therapy , COVID-19 , Coronavirus Infections/physiopathology , Humans , Male , Pneumonia, Viral/physiopathology , Quadriplegia/complications , Quadriplegia/physiopathology , Quadriplegia/therapy , Respiratory Tract Infections/physiopathology , SARS-CoV-2 , Spinal Cord Injuries/complications , Spinal Cord Injuries/physiopathology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL